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湖北省普通高等学校人文社会科学重点研究基地

湖北金融发展与金融安全研究中心的前身是1985年成立的武汉金融高等专科

学校金融研究所。湖北经济学院成立后，更名为湖北经济学院金融改革与发展研

究所，2003年10月改为现名。研究中心由湖北经济学院建设，以湖北经济学院金

融学院为依托,开放式运作，集中研究湖北金融发展与金融安全领域的重大理论

与现实问题，为湖北金融发展和经济建设服务。研究中心包括农村金融、互联网

金融、区域金融、金融监管与金融安全四个研究所。

研究中心始终坚持理论研究与应用研究相结合，跟踪国内外学科发展前沿与

形成自身特色相结合的科学研究理念，紧紧围绕开放经济条件下的金融发展与金

融安全主题开展科学研究工作，一批研究成果达到了国内领先水平。目前已出版

了《资本流入与发展中国家金融安全》、《发展中国家银行危机研究》、《21世

纪区域金融安全问题研究》等学术专著20余部，承担了国家社科基金课题、国家

自科基金课题、教育部人文社科基金课题和湖北省政府重大招标课题30多项。在

《经济研究》、《金融经济》、《保险研究》、《投资研究》等国内著名学术期

刊上发表了一批高质量的学术论文，其中，30多篇论文分别被新华文摘、中国人

民大学报刊复印资料、高等学校文科学报文摘等权威刊物转载。获得省部级以上

科研成果奖励20多项。

研究中心每年公开向社会招标省级重大、重点科学研究项目，并结集出版

《湖北金融发展与金融安全研究中心重点课题研究报告》，组织研究人员编纂

《湖北金融发展报告》、《中国金融前沿问题》；邀请金融界、学术界的专家学

者举办一年一度的地方金融发展论坛，经常性地举办专题学术报告；出版了不定

期的学术期刊《经济金融论坛》。

湖北金融发展与金融安全研究中心发展的总体目标是：建设成为全省乃至于

在全国有影响的金融学术研究中心、产学研培训中心、地方金融决策服务中心和

信息咨询中心，在全国金融学科具有明显的科研优势和学术影响，并为湖北省的

金融发展和经济建设提供学术上的支持。

地址：武汉市江夏区藏龙岛开发区杨桥湖大道8号
湖北经济学院明辨楼

电话：(027)81973783

传真：(027)81973783

邮编：430205

E-mail：jrzx@hbue.edu.cn

http://jryjzx.hbue.edu.cn网址：
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Abstract
We investigate model risk in pricing no-negative-equity guarantees (NNEGs) with the
aim of identifying the housing risks involved in equity-release products. To analyze the
regional and local effect in the house price modeling, we evaluate different models
using the house price index (HPI) based on the cities of London, Manchester and
Coventry and the UK nationwide HPI respectively. The ARMA-GARCH jump model
that can capture the characteristics of jump persistence, autocorrelation and volatility
clustering are proposed according to the model fittings. To investigate the model risk
on the cost of NNEGs, we then derive the risk-neutral valuation framework using the
conditional Esscher transform technique (Bühlmann et al. 1996). Our numerical anal-
yses reveal that the housing model risk affects the costs of NNEGs significantly. In
addition, the cost of NNEGs is significantly different for different cities due to localized
effect. Therefore, the basis risk is large enough to matter when pricing NNEGs.

Keywords NNEGs .Equity-releasingproducts .HousePrice returns .ConditionalEsscher
transform

Introduction

The continuing global increase in life expectancy demands urgent consideration of the
ways in which the retirement incomes of the elderly can be increased in order to ensure
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the maintenance of an acceptable standard of living. Although pension systems have
long been the primary financial resource for elderly people, aging populations and
increases in longevity on a global scale have put pension and annuity providers in
untenable positions, such that the response by many providers has been unavoidable
reductions in pension benefits (Antolin 2007). About 75% of the increasingly elderly
populations around the world are now considered to have inadequate income upon their
retirement; thus, governments are faced with the growing challenge of financing such
aging populations. Clearly, therefore, development within the private markets of
innovative financial products capable of increasing retirement income would be of
significant benefit.

Many elderly people are considered to be “cash poor and equity rich” (McCarthy
et al. 2002; Rowlingson 2006; Shan 2011). In the UK, for example, the aggregate non-
mortgaged equity owned by people over the age of 65 years was found to be £1100
billion, whilst in the US, the median value of mortgage-free homes in the early part of
the new century was found to be US$127,959, with more than 12.5 million elderly
people having absolutely no mortgage debt (American Housing Survey for the United
States 2005). Home equity therefore offers a potential alternative financial resource
capable of meeting current shortfalls in retirement income; and indeed, equity-release
products are designed exactly for this purpose, with homeowners receiving a lump sum
and/or annuity in exchange for the transfer of some, or all, of the value of their house to
a financial institution upon their death. The loan value is ultimately determined by the
age of the borrower, the interest rate and the value of the property. Such equity-release
products are available in several developed countries, including the US, the UK,
France, Australia, Canada and Japan, with the major advantage for homeowners being
that they can receive cash without having to leave the property. Due to the trend of
population aging, a number of studies have estimated the potential demand for equity-
release products. For example, across Europe as a whole, the report by Towers Watson
(2014) estimate that there is potential for over €20bn to be released from equity release
products each year and over €20bn 10 years.1

Equity-release products are widely offered by financial institutions, such as banks or
insurance companies, but of course, there are risks involved for such institutions
providing these products. The most obvious of these risks is the negative equity that
such institutions may have to assume if the proceeds from the sale of the house prove to
be less than the loan value paid out which is crossover risk. Equity-release mortgages
differ from traditional mortgages, since the loans and accrued interest are required to be
repaid when the borrower dies or leaves the house. Therefore management of these
risks has become a crucial element for equity-release product providers in the continu-
ing development of this market.

Writing of no-negative-equity guarantees (NNEGs) is the main method used to deal
with the associated risks in equity-release products in the UK. NNEGs protect the
borrowers by capping the redemption amount of the mortgage at the lesser amount of
the face value of the loan or the sale proceeds of the property; thus, NNEGs can be
viewed as a European put option on the mortgaged property. Since the effective

1 This estimate projected in 2030 is based on the following conservative assumptions: the elderly population in
Europe is 124 million; the overall home ownership in the population is 71%; average house price is €210,000;
a 22% loan-to value and annual sales of 1/2%; no inflation.
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valuation of NNEGs has clearly become extremely important in developing an under-
standing of equity-release products, the primary aim of this study is to examine the
housing model risk factors involved in the pricing of NNEGs.

In the continuing development of the pricing of equity-release products, the
primary concern, thus far, has been shown to be house price risk (Kau et al.
1995), with the assumption in a number of the prior studies being that house
prices are driven by a Geometric Brownian Motion (GBM) for reverse mort-
gages, which thereby facilitates the application of the Black and Scholes (1973)
option pricing formula to NNEGs pricing.2 Mortgage pricing models using the
Black-Scholes approach have been introduced in several studies based upon the
assumption that the house price process follows a standard stochastic process.3

Further assuming that the house price index follows a GBM for derivative
contracts based on the credit loss of mortgage portfolios, Duarte and McManus
(2011) found that loss-based indices provided a better means of hedging credit
risk in mortgage portfolios than indices based on house prices.

There are numerous similar examples to be found in the real estate literature;
however, in many of the empirical investigations, two important properties have
been found to be associated with house price return dynamics. Firstly, the log-
return of house prices is found to be autocorrelated, and secondly, the volatility
of the log-return of house prices is found to be time-varying or volatility
clustering. Li et al. (2010) and Chen et al. (2010) therefore turned to the use
of ‘Autoregressive moving average - generalized autoregressive conditional
heteroskedasticity’ (ARMA-GARCH) models as their approach to capturing
house price dynamics in the UK equity-release market and the US HECM
program. However, there must also be consideration of the fact that house
price return dynamics have been subject to abnormal shocks over recent years,
the most obvious example of which is the 2008 subprime mortgage crisis.

2 See, for example, Szymanoski (1994) and Wang et al. (2007).
3 Examples include Ambrose and Buttimer (2000), Bardhan et al. (2006) and Liao et al. (2008).

Fig. 1 Historical monthly returns of House Price Index (HPI), London, Manchester and Coventry,
respectively
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The UK house price monthly returns from 1995 to 2019 are displayed in Fig. 1, with
the details being obtained from the Nationwide House Price Index (HPI) and the city
HPI based on London, Manchester and Coventry.4 As we can see, housing price returns
reveal significant jump risk when the monthly housing price returns is found to have
changed by more than three standard deviations. The most significant downward jump
occurred in 2008, following the outbreak of the subprime mortgage crisis. The pattern
of return series is different between the city HPIs and the nationwide HPI. Given that
the effects of such a downward jump are both systematic and non-diversifiable, this can
lead to enormous problems within the general real estate market; thus, the jump effects
in house prices have attracted considerable attention and related investigations over
recent years.

Both Kau and Keenan (1996) and Chen et al. (2010) used the jump diffusion process
to describe the changes in house prices, with the latter study demonstrating that
abnormal shocks have significant impacts on mortgage insurance premiums. Chang
et al. (2011) further extended the double exponential jump-diffusion model of Kou
(2002) to consider the asymmetric jump risk in the pricing of mortgage insurance. On
other hand, Eraker (2004), Duan et al. (2006, 2007), Maheu and McCurdy (2004) and
Daal et al. (2007) find that accommodating for jumps effect in the log return
and volatility considerably improves the model’s fit for the return data of equity
markets.

Nevertheless, despite the jump risk having been taken into consideration in the
modeling of house price dynamics in numerous prior studies, it appears that each of
these studies has failed to consider the important properties of volatility persistence and
autocorrelation in the log returns and allows time-variation in jump component of the
log returns and volatility.5 We therefore aim to fill the gap within the extant literature
by taking these factors into consideration. In specific terms, we study the jump
dynamics in house price returns based upon an ARMA-GARCH specification which
allows for both constant and dynamic jumps. Following Chan and Maheu (2002) and
Maheu and McCurdy (2004),6 we assume the distribution of jumps is to be Poisson
with a time-varying conditional intensity parameter. In the empirical study, similar to
the approach in Li et al. (2010), we focus on the UK equity-release market. However, in
addition to the use of Nationwide HPI, we also consider the basis risk7 and adopt the
HPI in the cities of London, Manchester and Coventry to carry out our empirical

4 There are localized effects in different cities and regions and HPI do not capture all of the semi-idiosyncratic
risk that appears in housing. To consider basis risk, we also analyze some city/region indices in this study.
5 Examples include Kau and Keenan (1996), Chen et al. (2010) and Chang et al. (2011).
6 Chan and Maheu (2002), Eraker (2004), Maheu and McMcurdy (2004), Duan et al. (2006, 2007) and Daal
et al. (2007) all consider the GARCH jumpmodel for dealing with equity returns and find that accommodating
for jumps effect in the log return and volatility considerably improves the model’s fit for the return data of
equity markets. Among them, Eraker (2004) and Duan et al. (2006, 2007), Chan and Maheu (2002), Maheu
and McMcurdy (2004) and Daal et al. (2007) consider a dynamic jump setting. Duan et al. (2006) extended
theory developed by Nelson (1990) and Duan (1997) by considering limiting models for the GARCH-jump
process. In additional, Duan et al. (2007) provide empirical test of GARCH-jumpmodel to price options, using
data on S&P 500 index and the set of European options written on S&P 500 index. Further, Daal et al. (2007)
proposed asymmetric GARCH-jump models that synthesize autoregressive jump intensities and volatility
feedback in the jump component to fit for the dynamics of the equity returns in the US and emerging Asian
stock markets. However, different to these literatures, we deal with house price return dynamics instead of
equity returns. Thus, we further consider the ARMA-GARCH jump framework.
7 The discrepancy between the returns on the mortgaged property.
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analysis for the selection of the jump dynamic specifications based upon actual house
price returns data. In order to facilitate our investigation of the jump effects in house
price return modeling, we carry out a comparison between the fitting accuracy of the
proposed ARMA-GARCH jump model and various other jump diffusion models, such
as the Merton (1976) and Kou (2002) models, as well as the models proposed within
the prior literature relating to NNEGs pricing, such as the GBM, ARMA-GARCH and
ARMA-EGARCH models. Our empirical analyses, based upon three different data
periods, reveal that the ARMA-GARCH jump model with dynamic jump specifications
provides the best fit, according to both log-likelihood, Akaike information criteria
(AIC) and Bayesian information criteria (BIC). The ARMA-GARCH dynamic jump
model shows significant persistence in the conditional jump, which indicates that when
designing equity-release products, we cannot ignore the jump risk associated with
house price returns.

We provide findings are important to pricing of NNEGs and contributing to
the extant literature on equity-release products in the following ways. Firstly,
our study addresses the model risk in NNEGs pricing by comparing the costs
based on various house price return models. Secondly, we derive our risk-
neutral valuation framework with house price return dynamics based upon an
ARMA-GARCH jump process using the conditional Esscher transform tech-
nique (Bühlmann et al. 1996). Thirdly, we also show the basis risk by identi-
fying the cost of NNEGs is significant different based on the UK nationwide
HPI and the city HPI in London, Manchester and Coventry due to there are
localized effects in different cities and regions. Finally, our numerical findings
reveal that ignoring the model risks will ultimately result in the pricing error of
NNEGs.

The remainder of this paper is organized as follows. We construct an
ARMA- GARCH jump model in Section 2 and then carry out empirical
analyses to investigate the jump effect in house price returns. This is followed
in Section 3 by the derivation of a risk-neutral valuation framework for NNEGs
pricing under ARMA-GARCH jump models. A numerical investigation of the
effects of housing models risk is subsequently carried out on NNEGs costs in
Section 4. Finally, the conclusions drawn from this study are presented in
Section 5.

Analysis of House Price Returns with Jumps for UK Equity Releasing
Product

The Payoff of NNEGs with Equity Releasing Products

In the UK, an equity-release product must include the provision of a no- negative-
equity-guarantees (NNEGs) in order to meet the Product Standards within the
Statement of Principles of the Equity Release Council.8 NNEGs protect the borrower
by capping the redemption amount of the mortgage at the lesser of the face amount of
the loan or the sale proceeds of the property; thus, the provision of NNEGs is similar in

8 The Federal Home Loan Bank Board approved ERMs in 1979.
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effect to the writing of a European put option on the mortgaged property. The effective
valuation of NNEGs has clearly become an important issue. Because house price
returns constitute the payoff of NNEGs, understanding the dynamic of house price
returns is very critical in analyzing the cost of NNEGs.

Let’s define the payoffs of the NNEGs for a ‘roll-up’ mortgage as an example.9 We
denote Kt as the outstanding balance of the loan and Ht represent the value of the
mortgaged property. The amount repayable (outstanding balance) at time Tis the sum of
the principal, K, plus the interest accrued at a fixed roll-up rate; that is,

KT ¼ KeνT ; ð1Þ

At the time that the loan becomes repayable, time T, if Ht <Kt, then the borrower pays
Ht, and if Ht >Kt,then the borrower pays Kt. Once the loan is repaid, the provider
receives an amount, Kt, plus the NNEGs payoff, which is:

−Max Kt−Ht; 0½ �; ð2Þ

or exactly the payoff of a short position on a European put option with strike price Kt

written on an underlying mortgaged property, Ht. Nevertheless, the valuation of a
NNEG is more complex than the valuation of a European equity put option, essentially
because the house return model must be able to deal simultaneously with the preceding
stylized facts such as autocorrelation, heteroskedasticity and jump effects. Neither the
Black-Scholes nor the Merton jump option pricing formulae are appropriate for the
valuation of NNEGs since the former assumes that the returns of the underlying asset
follow a GBM, whilst the latter assumes that they follow a mixed-jump process. Thus,
we validate the autocorrelated, heteroskedasticity and jump effects for house price
returns first. In the following, we go on to analyze the specifications of an ARMA-
GARCH jump model.

The ARMA(s,m)-GARCH(p,q) Jump Model for House Price Returns

Analysis of the properties of volatility clustering and autocorrelation effects with house
price return dynamics has already been investigated by Chen et al. (2010) and Li et al.
(2010). We extend their analysis by considering the jump effect with house price return
dynamics based upon an empirical investigation (see Fig. 1); our analysis involves the
construction of a house price return model capable of capturing the properties of
volatility clustering and both jump and autocorrelation effects under Maheu and
McCurdy (2004) framework.

We begin by investigating the house price returns data based upon time-series
analysis, and then go on to develop the ARMA-GARCH jump model. Let

Ω;Φ;P; Φtð ÞTt¼0

� �
be a complete probability space, where P is the data-generating

probability measure, with specifications for the conditional mean and conditional

9 The most common types of payment options for equity-release products are lump sum (roll-up), terms, lines
of credit, modified terms (combining lines of credit and term payments), tenure and modified tenure
(combining lines of credit and tenure). Given that the roll-up mortgage has become the most popular payment
option, our ongoing analysis focuses on this type of mortgage.
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variance. Let Ht denote the UK house price and Yt represent the house price return at

time t. Yt is defined as ln Ht
Ht−1

� �
and the proposed ARMA-GARCH jump model

governing the return process is then expressed as:

Y t ¼ ln
Ht

Ht−1

� �
¼ μt þ εt; ð3Þ

The mean return follows an autoregressive moving average (ARMA) process as

ut ¼ cþ ∑
s

i¼1
ϑiY t−i þ ∑

m

j¼1
ζ jε;

t− j ð4Þ

where s is the order of the autocorrelation terms; m is the order of the moving average
terms; ϑi is the ith-order autocorrelation coefficient; ζj is the jth-order moving average
coefficient; εt is the total returns innovation observable at time t which is

εt ¼ ε1;t þ ε2;t ð5Þ

Extending from Maheu and McCurdy (2004),10 we set two stochastic innovations in
which the first component (ε1, t)captures smoothly evolving changes in the conditional
variance of returns and the second component (ε2, t) causes infrequent large moves in
returns and are denoted as jumps. ε1, t is set as a mean-zero innovation (E[ε1, t|Φt − 1] =
0) with a normal stochastic forcing process as

ε1;t ¼
ffiffiffiffi
ht

p
zt; zt∼NID 0; 1ð Þ; ð6Þ

And ht denote the conditional variance of the innovations, given an information set of
Φt − 1,

ht ¼ wþ ∑
q

i¼1
αiε

2
t−i þ ∑

p

j¼1
β jht− j; ð7Þ

where p is the order of the GARCH terms; q is the order of the ARCH term; αi is the ith-
order ARCH coefficient; and βj is the jth-order GARCH coefficient. ε1, t is
contemporaneously independent of ε2, t. ε2, t is a jump innovation that is also
conditionally mean zero (E[ε2, t|Φt − 1] = 0) and we describe ε2, t in next subsection.

The Setting of Jump Dynamics

To capture the jump risk, the second component of innovation is employed to reflect
the large change in price and modeled as

10 Maheu and McCurdy (2004) consider the jump setting under a constant conditional mean of GARCH
model. We deal with a jump ARMA-GARCH model and the likelihood function for parameter estimation is
reconstructed.
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ε2;t ¼ ∑
Nt

k¼1
Vt;k−ϕλtV t;k∼NID ϕ; θ2

� �
for k ¼ 1; 2;⋯ ð8Þ

where Vt, k denotes the jump size for the kth jump with the jump size following the
normal distribution with parameters, (ϕ, θ2) and Nt is the jump frequency from time t −
1 to t, distributed as a Poisson process with a time-varying conditional intensity
parameter(λt); that is:

P Nt ¼ jjΦt−1ð Þ ¼ exp −λtð Þλ j
t

j!
; j ¼ 0; 1; 2:…; ð9Þ

where the parameter λt represents the mean and variance for the Poisson random
variable, also referred to as the conditional jump intensity.

To facilitate our investigation of the jump effect on house price returns, we extend
the work of Chan and Maheu (2002), Maheu and McCurdy (2004) and Daal et al.
(2007) to specify λt as an ARMA form, which is

λt ¼ λ0 þ ρλt−1 þ ςψt−1; ð10Þ

where ρ measures jumps persistence. Since the ςvariable measures the sensitivity of the
jump frequency (λt) to past shocks (ψt − 1), with ψt − 1representing the unpredict-
able component affecting our inference on the conditional mean of the counting
process, Nt − 1, then this suggests corresponding changes. We also investigate
the constant jump effect, which represents a special case of Eq. (10) with the
restriction of constant jump intensity(λt = λ0); this is imposed by setting ρ = 0
and ς = 0 .

The conditional jump intensity in this model is time-varying, with an unconditional
value under certain circumstances. In order to derive the unconditional value of
λt, we must first recognize that ψt is a martingale difference sequence with
respect to Φt − 1, because:

E ψtjΦt−1½ � ¼ E E NtjΦt½ �jΦt−1½ �−λt ¼ λt−λt ¼ 0; ð11Þ

Thus, E[ψt = 0] and Cov(ψt,ψt − i) = 0, i > 0.
Another way of interpreting this result is to note that, by definition, ψt is

nothing more than the rational forecasting error associated with updating the
information set; that is, ψt = E[Nt|Φt] − E[Nt|Φt − 1]. There are several important
features in the conditional intensity model as noted by Maheu and McCurdy
(2004). First, if the conditional jump intensity is stationary, (|ρ| < 1), then the
unconditional jump intensity is equal to

E λt½ � ¼ λ0

1−ρ
ð12Þ

Second, to forecast λt + i, the multi-period forecasts of the expected number of future
jumps are
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E λtþijΦt−1½ � ¼ λt i ¼ 0
λ0 1þ ρþ⋯þ ρi−1
� �þ ρiλt i≥1

	
ð13Þ

Thus, the conditional jump intensity can be re-expressed as

λt ¼ λ0 þ ρ−ςð Þλt−1 þ ςE Nt−1jΦt−1½ � ð14Þ

Because the jump intensity residual is defined as

ψt−1 ¼ E Nt−1jΦt−1½ �−λt−1 ¼ ∑
∞

j¼0
jP Nt−1 ¼ jjΦt−1ð Þ−λt−1 ð15Þ

where E[Nt − 1|Φt − 1] is our ex post assessment of the expected number of jumps that
occurred form t − 2 to t − 1, and P(Nt − 1 = j|Φt − 1) is called the filter and is the ex post
inference on Nt − 1 give time t − 1 information.

Note that, a sufficient condition to ensure λt ≥ 0, for all t > 1, is λ0 > 0, ρ ≥ ς, and ς >
0. In addition, to forecast the conditional jump intensity, the startup value of λ0 and
ψ1must be set. We follow Maheu and McCurdy (2004) to set λ0as the unconditional
value shown in Eq. (12), and ψ1 = 0. More details regarding the ARMA jump intensity
can be referred to Maheu and McCurdy (2004).

Parameter Estimation

The parameters of the ARMA-GARCH jump model can be estimated using the
maximum likelihood estimation (MLE) method. The construction of the likelihood
function is described as follows. Let Fn(Θ)denote the log-likelihood function and Θis
the parameter set governing the ARMA-GARCH jump model, which implies Θ = (c,
ϑs, ζm,w,α, β, λ0, ρ, ς, ϕ, θ) We aim to find the optimal parameters (Θ∗) to maximize
the log-likelihood function. The log-likelihood function can be expressed as

Fn Θð Þ≔ ∑
N

t¼1
log f Y tjΦt−1;Θð Þ ð16Þ

The conditional on j jumps occurring the conditional density of returns is Gaussian,

f Y tjNt ¼ j;Φt−1;Θð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π ht þ jθ2
� �q � exp −

Y t−ut þ ϕλt−jϕð Þ2
2 ht þ jθ2
� � !

: ð17Þ

In Eq. (16), the conditional density of return at time t (f(Yt|Φt − 1,Θ)) for calculating log-
likelihood function can be obtained by integrating out the number of jumps as

f Y tjΦt−1;Θð Þ ¼ ∑
∞

j¼0
f Y tjNt ¼ j;Φt−1;Θð ÞP Nt ¼ jjΦt−1;Θð Þ

¼ ∑
∞

j¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π ht þ jθ2
� �q � exp −

Y t−ut þ ϕλt−jϕð Þ2
2 ht þ jθ2
� � !

:
exp −λtð Þλ j

t

j!

ð18Þ
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where the conditional density of Nt (P(Nt = j|Φt − 1,Θ)) is shown in Eq. (9). Since we
assume the time-varying conditional intensity parameter (λt) follow an ARMA form as
shown in Eq. (10), we need to work out the past shock(ψt − 1) that affects the inference
on the conditional mean of the counting process first. ψt − 1 is defined as

ψt−1 ¼ E Nt−1jΦt−1;Θ½ �−λt−1 ¼ ∑
∞

j¼0
jP Nt−1 ¼ jjΦt−1;Θð Þ−λt−1 ð19Þ

where E[Nt − 1|Φt − 1,Θ] is given by Eq. (15). This expression could be estimated if P(Nt

− 1 = j|Φt − 1,Θ) are known. Following Maheu and McCurdy (2004), the ex post
probability of the occurrence of j jumps at time t-1 can be inferred using Bayes’
formula as follows.

E Nt−1jΦt−1;Θ½ � ¼ ∑
∞

j¼0
jP Nt−1 ¼ jjΦt−1;Θð Þ

¼ ∑
∞

j¼0
j
f Y t−1jNt−1 ¼ j;Φt−2;Θð ÞP Nt−1 ¼ jjΦt−2;Θð Þ

f Y t−1jΦt−2;Θð Þ

¼
∑
∞

j¼1

exp −λt−1ð Þλ j
t−1

j!
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π ht−1 þ jθ2
� �q � exp −

Y t−1−ut−1 þ ϕλt−1−jϕð Þ2
2 ht−1 þ jθ2
� � !

f Y t−1jΦt−2;Θð Þ

ð20Þ

The details of Bayes’ inference on calculating E[Nt − 1|Φt − 1,Θ] is presented in Maheu
and McCurdy (2004) Thus, by iterating on (10), (18) and (20), we can construct the
log-likelihood function and obtain the maximum likelihood estimators. In addition,
Eqs. (18), (19) and (20) involves an infinite summation depending on the jumps.11 We

11 Equation (18), (19) and (20) involve an infinite sum over the possible number of jumps, Nt. In practice, for
our model estimated we found that the conditional Poisson distribution had zero probability in the tail for
values of Nt ≥ 10 and the likelihood and the parameter estimates converge.

Table 1 Summary statistics, 1995 m1–2019 m3

City / region indices Variables Mean S.D. Skewnessa,c Excess
Kurtosisa,c

LB Q(34)
Stats

UK HPI Yt 0.0049 0.0086 −0.3294** 1.7967*** 629.5500***

Yt
2 0.0001 0.0002 3.0881*** 12.0300*** 348.2680***

London Yt 0.0063 0.0121 −0.0987 0.8455*** 198.3601***

Yt
2 0.0002 0.0003 2.8567*** 10.8469*** 97.7572***

Manchester Yt 0.0056 0.0171 0.1448 0.4201 493.3531***

Yt
2 0.0003 0.0005 4.2522*** 30.2662*** 297.9754***

Coventry Yt 0.0053 0.0122 −0.6077*** 2.4613*** 346.392***

Yt
2 0.0002 0.0003 4.1012*** 26.1271*** 86.134***

a The skewness and excess kurtosis statistics include a test of the null hypotheses that each is zero (the
population values if the series is i.i.d. Normal.)
b The LB Q (34) statistics refer to the null hypothesis of no serial correlation with 34 lags
c ** indicates significance at the 5% level; and *** indicates significance at the 1% level
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find that truncation of the infinite sum in the likelihood at 10 captures all the tail
probabilities and gleans sufficient precision in the estimation procedure.

Empirical Analysis of Model Fit

We examine the performance of the ARMA-GARCH jump model using time-series
data and focus on an investigation into whether the conditional jump intensity is time-
varying or constant. To consider the regional and local effect in the house price
modeling, we evaluate the model using various HPI in the cities of London,
Manchester and Coventry and the UK nationwide HPI. Our monthly data period runs
from the 1995/1 to 2019/3, thereby providing a total of 291 monthly observations. As a
robustness check, we also examine the results for different data periods (from the
2000/1 to 2019/3 and 2005/1 to 2019/3).

Table 3 Model selections, 1995 m1–2019m3

Nationwide/ City indices Model Log-Likelihood AIC BIC

UK HPI Geometric Brownian Motion 854.9140 −5.8911 −5.7258
ARMA-GARCH 958.4387 −6.9704 −6.8479
ARMA-EGARCH 970.1280 −7.0812 −6.9188
Merton jump 864.9137 −5.9304 −5.8672
Double exponential jump diffusion 879.1243 −5.9941 −5.9109
ARMA-GARCH Constant jump 975.5491 −7.0949 −6.9315
ARMA-GARCH Dynamic jump 982.8666 −7.1117 −6.9475

London Geometric Brownian Motion 757.3206 −5.8677 −5.4424
ARMA-GARCH 830.9749 −6.0455 −5.7630
ARMA-EGARCH 835.2531 −6.0525 −5.8303
Merton jump 767.3208 −5.9470 −5.5838
Double exponential jump diffusion 782.1498 −5.9814 −5.6610
ARMA-GARCH Constant jump 839.0351 −6.0799 −5.9170
ARMA-GARCH Dynamic jump 852.8115 −6.1798 −6.1798

Manchester Geometric Brownian Motion 700.9627 −5.2894 −5.0941
ARMA-GARCH 764.3475 −5.5791 −5.3357
ARMA-EGARCH 770.1396 −5.6214 −5.3985
Merton jump 710.1125 −5.3687 −5.1154
Double exponential jump diffusion 718.9628 −5.4382 −5.1494
ARMA-GARCH Constant jump 770.3333 −5.6228 −5.4385
ARMA-GARCH Dynamic jump 777.5444 −5.6240 −5.4398

Coventry Geometric Brownian Motion 800.7496 −6.1169 −5.9616
ARMA-GARCH 867.8547 −6.3012 −6.1401
ARMA-EGARCH 878.5910 −6.3130 −6.1587
Merton jump 805.7497 −6.1362 −5.9729
Double exponential jump diffusion 817.5987 −6.2895 −6.0914
ARMA-GARCH Constant jump 881.7035 −6.3892 −6.2058
ARMA-GARCH Dynamic jump 890.7122 −6.4385 −6.2115
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Table 4 Robustness check of model selections

City / region indices Model Log-Likelihood AIC BIC

Panel A: 2000 m1–2019 m3

UK HPI Geometric Brownian Motion 694.9567 −6.0127 −5.9928
ARMA-GARCH 748.3367 −6.9682 −6.7983
ARMA-EGARCH 758.2367 −7.0813 −6.8009
Merton jump 704.9564 −6.0866 −6.0118
Double exponential jump diffusion 708.1456 −6.1015 −6.0218
ARMA-GARCH Constant jump 761.318 −7.0820 −6.8322
ARMA-GARCH Dynamic jump 763.485 −7.1021 −6.9023

London Geometric Brownian Motion 595.4259 −5.9428 −5.7829
ARMA-GARCH 650.8875 −6.0730 −5.8576
ARMA-EGARCH 656.8316 −6.0817 −5.8924
Merton jump 605.4260 −5.9567 −5.8020
Double exponential jump diffusion 610.8954 −5.9645 −5.8154
ARMA-GARCH Constant jump 659.5754 −6.1071 −5.9081
ARMA-GARCH Dynamic jump 672.3711 −6.2256 −5.9768

Manchester Geometric Brownian Motion 565.9762 −5.2989 −5.2290
ARMA-GARCH 605.4636 −5.6585 −5.4530
ARMA-EGARCH 612.7325 −5.7264 −5.4560
Merton jump 570.9784 −5.3129 −5.2381
Double exponential jump diffusion 575.9847 −5.4087 −5.2541
ARMA-GARCH Constant jump 613.5178 −5.7338 −5.4579
ARMA-GARCH Dynamic jump 614.0964 −5.7392 −5.5135

Coventry Geometric Brownian Motion 634.2999 −5.9914 −5.9001
ARMA-GARCH 691.7557 −6.4350 −6.1601
ARMA-EGARCH 695.3100 −6.4380 −6.1638
Merton jump 642.3001 −5.9939 −5.9192
Double exponential jump diffusion 650.1596 −6.0154 −5.9245
ARMA-GARCH Constant jump 695.6294 −6.4410 −6.1672
ARMA-GARCH Dynamic jump 698.0111 −6.4630 −6.2391

Panel B: 2005 m1-2019m3

UK HPI Geometric Brownian Motion 540.2675 −7.1202 −6.9591
ARMA-GARCH 558.2675 −7.2794 −6.9841
ARMA-EGARCH 565.8210 −7.3483 −7.1057
Merton jump 548.6538 −7.1267 −6.9644
Double exponential jump diffusion 550.1597 −7.1314 −6.9715
ARMA-GARCH Constant jump 571.1226 −7.3693 −7.1090
ARMA-GARCH Dynamic jump 571.3278 −7.3719 −7.1095

London Geometric Brownian Motion 425.1710 −5.8897 −5.6288
ARMA-GARCH 461.3396 −5.9714 −5.6478
ARMA-EGARCH 467.1654 −5.9893 −5.6550
Merton jump 435.1710 −5.8904 −5.6321
Double exponential jump diffusion 438.4562 −5.8914 −5.6352
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The summary statistics on the levels and squares of the log-return series for
different HPI are reported in Table 1, from which it presents a clear evidence
of time dependence using the modified Ljung-Box (LB) statistics (West and
Cho 1995). These statistics, which are reported for autocorrelations of up to 34
lags, are found to be robust to validate the property of heteroskedasticity in
house price returns. In addition, the modified LB statistics show strong serial
correlation in both the levels and the squares of the house price return series in
the UK nationwide HPI and in the cities of London, Manchester and Coventry
respectively. The observations are consistent with Li et al. (2010) although they
use UK nationwide HPI only in their empirical study.

We further investigate the jump dynamics for both dynamic and constant
jump models under the framework of an ARMA(s,m)-GARCH(p,q) model. The
parameters of these two ARMA-GARCH jump models are estimated by max-
imizing the conditional log-likelihood functions. The selection of the
ARMA(s,m)-GARCH(p,q) model in this study is based upon the Box-Jenkins
approach.12 The details of the evaluation of our ARMA(s,m)-GARCH(p,q)
jump models and the corresponding parameter estimates are presented in
Table 2.

We evaluate the performance of the jump dynamics using log-likelihood, AIC and
BIC.13 The log-likelihood, AIC and BIC results indicate that the ARMA-GARCH
dynamic jump model provides a better fit, with the persistence parameter (ρ) in this

12 Although not reported here, the parameter estimates of the models are available upon request.
13 AIC = −2/obs. ln(likelihood) + 2/ obs. × (No. of parameters) (Akaike 1973); BIC = −2/ obs. ln(likelihood) +
([No. of parameters] × ln[obs.]) / obs.; obs. is the sample size.
0 The stochastic processes of these models are available upon request.

Table 4 (continued)

City / region indices Model Log-Likelihood AIC BIC

ARMA-GARCH Constant jump 467.6271 −5.9952 −5.6715
ARMA-GARCH Dynamic jump 470.3781 −6.0304 −5.7715

Manchester Geometric Brownian Motion 400.4166 −5.5884 −5.4905
ARMA-GARCH 449.8541 −5.8422 −5.6260
ARMA-EGARCH 453.2809 −5.8867 −5.6289
Merton jump 405.4166 −5.5931 −5.5009
Double exponential jump diffusion 410.1432 −5.6032 −5.5107
ARMA-GARCH Constant jump 453.7993 −5.8935 −5.6318
ARMA-GARCH Dynamic jump 460.1478 −5.9547 −5.6611

Coventry Geometric Brownian Motion 450.0314 −6.1204 −6.0535
ARMA-GARCH 496.6803 −6.4503 −6.1941
ARMA-EGARCH 505.5307 −6.4811 −6.1945
Merton jump 461.0316 −6.1651 −6.0728
Double exponential jump diffusion 478.1235 −6.2615 −6.1014
ARMA-GARCH Constant jump 505.9544 −6.4865 −6.1952
ARMA-GARCH Dynamic jump 525.1985 −6.5000 −6.2012
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model being found to be statistically significant with range from 0.7124 to 0.9591 in
the City of Coventry, Manchester, London and in UK HPI. This finding suggests that a
high probability of many (few) jumps will also tend to be followed by a similarly high
probability of many (few) jumps. Recall that ψt is the measurable shock constructed by
econometricians using the ex post filter; thus, in a correctly-specified model, ψt should
not display any systematic behavior.

In order to facilitate a thorough investigation in the present study of the
importance of the jump effect in the modeling of house price returns, the
existing models proposed in Chen et al. (2010) and Li et al. (2010) – which
include the GBM, ARMA-GARCH and ARMA-EGARCH models – are also
fitted to exactly the same series of housing returns. We further compare the
performance of the ARMA-GARCH jump model with other jump diffusion
models, such as the Merton (1976) and Kou (2002) models, both of which
allow for jump effects, but do not consider the effects of autocorrelation and
volatility persistence. We present the fitting results for each of the different
models based on different house price return indices in Table 3.14 The stochas-
tic processes of these models are described in Appendix 1. The empirical
results indicate the superiority of the ARMA-GARCH jump model over the
existing house price return models, with the ARMA-GARCH dynamic jump
model demonstrating further improvements on each of the other models based
upon the log-likelihood, AIC and BIC values. The conclusion applies to both
nationwide HPI and the HPI in different cities.

Although the jump effect is taken into consideration in the jump diffusion
models, such as those proposed by Merton (1976) and Kou (2002), the perfor-
mance of their models is nevertheless found to be inferior to that of the time-
series models within which the effects of autocorrelation and volatility cluster-
ing are also taken into consideration; it therefore seems clear that a house price
return model capable of simultaneously taking into consideration all three
properties would represent an important contribution to this particular field of
research.

As a check for the robustness of our results, we also investigate the model fit by
considering different periods of the housing return data. The results for the 2000/1 to
2019/3 and 2005/1 to 2019/3 are shown in Table 4, For both sub-periods, the ARMA-
GARCH dynamic jump model is still found to outperform each of the other models.

The results reported in Tables 3 to Table 4 confirm that the addition of jump
dynamics improves the specification of the conditional distribution, as compared with
the GBM, Merton jump, double exponential jump diffusion, ARMA-GARCH,
ARMA- EGARCH and ARMA-GARCH constant jump models. In addition, the
persistence parameter (ρ) governing the jump dynamic is statistically significant. It
clearly indicates that jump risk in housing returns is significant and critical for pricing
of NNEGs.15

14 The stochastic processes of these models are available upon request.
15 The persistence parameter (ρ) governing the jump model is estimated to be around 0.7124 to 0.9591, with
statistical significance. We didn’t report the entire parameter estimates here but they are available upon
request.

Economics and Finace Forum

16



Valuation of NNEGs

The Valuation Framework

Let V(0, s) denote the no-arbitrage value of the NNEGs which is due at time s. The
NNEGs becomes due when the borrower dies. Thus, for a person aged x at inception,
the expected cost of the NNEGs, denoted as VNNEG(0, x), can be expressed as a series of
European put options with different maturity dates. Under a discrete time steps, the fair
value of the expected cost of a NNEGs is calculated as

VNNEG 0; xð Þ ¼ ∑ω−x−1
t¼0 spQ 0; xð ÞqQs 0; xð ÞV 0; sð Þ; ð21Þ

where ω is the maximal age of the borrower;spQ(0, x) is the projected
probability that a borrower aged x at inception will survive to age x + s and
qQs 0; xð Þis the mortality that a borrower aged x at inception will die during the
future time interval s to s + 1 under the risk adjusted probability measure Q, or
referring to as the risk-neutral measure.

The no-arbitrage value of V(0, s) is calculated by discounting the payoff at time s
under a risk-neutral measure Q, which is expressed as:

V 0; sð Þ ¼ EQ exp−rsMax Ks−Hs; 0½ �½ �: ð22Þ

where r is the risk free interest rate.
To deal with the no-arbitrage value of V(0, s) under the proposed ARMA-GARCH

jump model, we need to obtain the risk-neutral process of the underlying housing price
return. We use the conditional Esscher transform technique to derive the corresponding
risk-neutral pricing. The corresponding process to obtain the risk-neutral valuation will
be given in next subsection.

Risk-Neutral Valuation

To price NNEGs, we derive the corresponding risk-neutral return dynamic
under the proposed ARMA-GARCH jump model by employing the conditional
Esscher transform technique (Bühlmann et al. 1996). This technique has been
widely used in the pricing of financial and insurance securities in an incomplete
market since its introduction in 1932.16 Siu et al. (2004) use the conditional
Esscher transform for pricing derivatives when the underlying asset returns
were found to follow GARCH processes. Recently, such technique has been
extended to deal with pricing reverse mortgage products (Li et al. 2010; Chen
et al. 2010; Yang 2011; Lee et al. 2012). To introduce the conditional Esscher
transform technique, we define a sequence {Λt| t = j, j = 0, 1,⋯, T} be a Φt-
adapted stochastic process:

16 See, for example, Gerber and Shiu (1994), Bühlmann et al. (1996), Siu et al. (2004), Li et al. (2010) and
Chen et al. (2010).
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ΛT ¼ ∏
T

t¼1

exp aY tð Þ
E exp aY tð ÞjΦt−1½ � ð23Þ

where Yt represents the house price return dynamic. The ARMA-GARCH jump
model for capturing house price return under the real world measure can be
referred to Eqs. (3)–(7). Bühlmann et al. (1996) has proved that E(ΛT) = 1 and
E(ΛT|Φt) =Λt. Equivalently, {Λt}is a martingale under P. We define a new
martingale measure Q by

dQ
dP

jΦt ¼ ΛT ð24Þ

Then, under a risk neutral measure, Q, the housing price return dynamic then becomes

Y t ¼ ln
Ht

Ht−1

� �
¼ r−

1

2
h*t þ εQt ; ð25Þ

with h*t ¼ ht þ ϕ2 þ θ2
� �

λt and εQt ¼ εt−ath*t . ε
Q
t follows a normal distribution

with mean 0 and variance h*t under measure Q. In other words, the house
price return dynamic under measure Q is similar to the form under measure
P, albeit with shifted parameters, that is. Y tjΦt−1∼N r− 1

2 h
*
t ; h

*
t

� �
. See Appendix

2 for the derivation of the risk-neutral ARMA-GARCH jump model in Eq.
(25).

Mortality Dynamic: CBD Model

To modeling mortality dynamics in Eq. (21), as opposed to using the static
mortality rate, we consider the longevity risk in NNEGs pricing and employ the
CBD model (Cairns et al. 2006) to project future mortality rates. The CBD

Table 5 Base assumption of parameter values for the pricing of NNEGs

Parameters Notation Value

Risk-free interest rate (%) r 1.878

Roll-up rate (%) ν 2.000

Average delay in time (year) δ 0.500

Market price of mortality risk λm 0.175

Amount of loan advanced at inception K 30,000

Initial property value for different ages, x, of borrowers (H0)

x = 60 Years 176,500

x = 70 Years 111,000

x = 80 Years 81,000

x = 90 Years 60,000
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model is attractive because it uses only a few parameters to obtain a good fit
for the mortality probabilities of the elders; thus, this model has been widely
adopted as a means of dealing with longevity risk for the elders (Wang et al.
2010; Yang 2011). Since the reverse mortgage products are issued for the
elders, we also adopt the CBD model. Under the CBD model, the mortality
rate for a person aged x dying before x + 1 valued in year t, denoted as q(t, x),
is projected by:

logit q t; xð Þ ¼ κ 1ð Þ
t þ κ 2ð Þ

t x−x
� �

; ð26Þ

Fig. 2 a Estimated kappa values for male samples b. Estimated kappa values for female samples
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Table 6 The Cost of NNEGs under various house price return models for male Unit: %

Nationwide / city indices Model Age of Borrowers (x): years

x = 60 x = 70 x = 80 x = 90

UK HPI Geometric Brownian Motion 3.845 3.035 2.126 1.376

(0.023) (0.021) (0.017) (0.007)

ARMA-GARCH 5.545 4.305 2.966 1.816

(0.026) (0.023) (0.019) (0.007)

ARMA-EGARCH 5.695 4.405 3.036 1.906

(0.023) (0.018) (0.011) (0.004)

Merton jump 3.955 3.205 2.186 1.446

(0.028) (0.014) (0.008) (0.006)

Double exponential jump diffusion 3.975 3.245 2.276 1.496

(0.025) (0.017) (0.013) (0.006)

ARMA-GARCH Constant jump 5.985 4.655 3.186 1.946

(0.032) (0.029) (0.024) (0.012)

ARMA-GARCH Dynamic jump 6.165 4.775 3.266 1.966

(0.035) (0.029) (0.022) (0.015)

London Geometric Brownian Motion 7.835 5.322 3.012 1.757

(0.019) (0.016) (0.012) (0.008)

ARMA-GARCH 9.535 6.592 3.852 2.197

(0.025) (0.022) (0.017) (0.004)

ARMA-EGARCH 9.685 6.692 3.922 2.287

(0.022) (0.017) (0.013) (0.006)

Merton jump 7.945 5.492 3.072 1.827

(0.026) (0.017) (0.005) (0.004)

Double exponential jump diffusion 7.965 5.532 3.162 1.877

(0.029) (0.020) (0.018) (0.010)

ARMA-GARCH Constant jump 9.975 6.942 4.072 2.327

(0.034) (0.026) (0.019) (0.011)

ARMA-GARCH Dynamic jump 10.155 7.062 4.152 2.347

(0.035) (0.025) (0.019) (0.011)

Manchester Geometric Brownian Motion 5.773 4.140 2.554 1.560

(0.024) (0.021) (0.018) (0.008)

ARMA-GARCH 7.473 5.410 3.394 2.000

(0.028) (0.024) (0.021) (0.012)

ARMA-EGARCH 7.623 5.510 3.464 2.090

(0.031) (0.024) (0.020) (0.009)

Merton jump 5.883 4.310 2.614 1.630

(0.026) (0.022) (0.011) (0.007)

Double exponential jump diffusion 5.903 4.350 2.704 1.680

(0.026) (0.023) (0.015) (0.012)

ARMA-GARCH Constant jump 7.913 5.760 3.614 2.130

(0.033) (0.031) (0.024) (0.017)
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where the parameter κ 1ð Þ
t represents the marginal effect of time on mortality

rates; parameter κ 2ð Þ
t refers to the old age effect on mortality rates; and x is the

mean age.17 With the estimated values of (κ 1ð Þ
t ;κ 2ð Þ

t ), we can forecast the future
mortality rates. In this study, we adopt Cairns et al. (2006)‘s approach to
estimate the parameters by using the least square method to fit the actual

mortality curve and then project the (κ 1ð Þ
t ;κ 2ð Þ

t ) based upon a two-dimensional
random walk with drift:

κtþ1 ¼ κt þ μþ CZtþ1 ð27Þ

where κt ¼ κ 1ð Þ
t ;κ 2ð Þ

t

h i0
and μ is a constant 2 × 1 vector; C is a constant 2 × 2

upper triangular matrix; and Zt is a two-dimensional standard Gaussian
process.

Equation (27) describes the dynamics of the random walk process κt under the real
world probability measure, P, for projecting the mortality rate shown in Eq. (26). Let
p(t, x) denote the projected one-year survival rate in year t based upon the CBD model,

17 We use the UK mortality data from 1950 to 2006 according to the human morality database (HMD) and the
data ages cover from age 60 to 100. Therefore, the mean age is 80 in our model calibration.
.

Table 6 (continued)

Nationwide / city indices Model Age of Borrowers (x): years

x = 60 x = 70 x = 80 x = 90

ARMA-GARCH Dynamic jump 8.093 5.880 3.694 2.150

(0.035) (0.031) (0.024) (0.020)

Coventry Geometric Brownian Motion 5.027 3.713 2.389 1.489

(0.026) (0.019) (0.014) (0.010)

ARMA-GARCH 6.727 4.983 3.229 1.929

(0.030) (0.025) (0.018) (0.014)

ARMA-EGARCH 6.877 5.083 3.299 2.019

(0.032) (0.027) (0.019) (0.015)

Merton jump 5.137 3.883 2.449 1.559

(0.026) (0.020) (0.014) (0.010)

Double exponential jump diffusion 5.157 3.923 2.539 1.609

(0.026) (0.020) (0.013) (0.011)

ARMA-GARCH Constant jump 7.167 5.333 3.449 2.059

(0.034) (0.030) (0.024) (0.017)

ARMA-GARCH Dynamic jump 7.347 5.453 3.529 2.079

(0.034) (0.031) (0.024) (0.018)

Note: The standard error of the simulation is shown in the parentheses
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the projected probability in year t that a borrower aged x will survive to age x + s is
calculated by

p t; xð Þ ¼ p t; xð Þp t þ 1; xþ 1ð Þ⋯p t þ s; xþ s−1ð Þ: ð28Þ

To project the mortality rate under a risk-neutral probability measure Q, following
Cairns et al. (2006), the dynamics become

κtþ1 ¼ κt þ μþ C eZtþ1−λm

� �
¼ κt þ eμþ C eZtþ1

� �
ð29Þ

where eμ ¼ μ−Cλm.

Table 7 Pricing error under NNEGs costs of male for various models Unit: %

City / region indices Model Age of Borrowers (x years)

x = 60 x = 70 x = 80 x = 90

UK HPI Geometric Brownian Motion 37.63 36.44 34.90 30.01

ARMA-GARCH 10.06 9.84 9.18 7.63

ARMA-EGARCH 7.62 7.75 7.04 3.05

Merton jump 35.85 32.88 33.06 26.45

Double exponential jump diffusion 35.53 32.04 30.31 23.91

ARMA-GARCH Constant jump 2.92 2.51 2.45 1.02

ARMA-GARCH Dynamic jump – – – –

London Geometric Brownian Motion 22.85 24.64 27.46 25.14

ARMA-GARCH 6.11 6.66 7.23 6.39

ARMA-EGARCH 4.63 5.24 5.54 2.56

Merton jump 21.76 22.23 26.01 22.16

Double exponential jump diffusion 21.57 21.67 23.85 20.03

ARMA-GARCH Constant jump 1.77 1.70 1.93 0.85

ARMA-GARCH Dynamic jump – – – –

Manchester Geometric Brownian Motion 28.67 29.59 30.86 27.44

ARMA-GARCH 7.66 7.99 8.12 6.98

ARMA-EGARCH 5.81 6.29 6.23 2.79

Merton jump 27.31 26.70 29.24 24.19

Double exponential jump diffusion 27.06 26.02 26.80 21.86

ARMA-GARCH Constant jump 2.22 2.04 2.17 0.93

ARMA-GARCH Dynamic jump – – – –

Coventry Geometric Brownian Motion 31.58 31.91 32.31 28.38

ARMA-GARCH 8.44 8.62 8.50 7.22

ARMA-EGARCH 6.40 6.79 6.52 2.89

Merton jump 30.08 28.79 30.61 25.01

Double exponential jump diffusion 29.81 28.06 28.06 22.61

ARMA-GARCH Constant jump 2.45 2.20 2.27 0.96

ARMA-GARCH Dynamic jump – – – –
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eZtþ1 in Eq. (29) is a standard two-dimensional normal random variable underQ. The
vector λ = (λm1, λm2) represents the market price of the longevity risk associated with
the respective processes of Z1, t and Z2, t . where λm1 is associated with level
shift in mortality and λm2 is associated with a tilt in morality. As in Cairns
et al. (2006), we assume that the market price of risk λm is not updated over
time; however, since there is no liquid market for systematic longevity risk, it
is difficult to calibrate the risk-neutral survival probabilities using empirical
data. Therefore, we follow the approach of Cairns et al. (2006) to carry out the
calibrations as the parameter value of λm = [0.175, 0.175]' for the pricing of
NNEGs in the present study.

Numerical Analysis of the Costs of no-Negative-Equity Guarantees

Example Setting and Assumptions

In this section, we study the impacts of model risk and basis risk on the costs of
NNEGs. We use Monte Carlo simulations to calculate the no-arbitrage value of
NNEGs. Thus, we first generate 100,000 sample paths of the risk-neutral house price
returns and then calculate the value of NNEGs (VNNEG(0, x))based on Eqs. (21) and
(22). In addition, to implementing simulations, we assume that all deaths occur at
midyear, and that δ is the average delay in the actual sale of the property in calculating
the NNEGs.

For a comparison purpose, we follow Li et al. (2010) to set up the relevant
assumptions for the NNEGs and list the information in Table 5. In addition, the
parameter estimates for the housing price return for the ARMA-GARCH jump model
can refer to Table 2 (in Section 2) and the parameter estimates for CBDmortality model
as shown in Eq. (26) are plotted in Fig. 2.

House Price Risk Effects: Model Risk and Basis Risk

In the numerical analysis, the model risk is analyzed by calculating the cost of NNEGs
under different models and the basis risk is examined by comparing the cost of NNEGs
with the nationwide HPI and the local HPI based on different cities. We first discuss the
model risk. Tables 6 and 7 show the cost of NNEGs under various house price return
models including the Black-Scholes, Merton jump diffusion, double exponential jump
diffusion, ARMA-GARCH and ARMA-EGARCH and the proposed ARMA-GARCH
jump models and under different nationwide and local HPI respectively.

In Table 6, we express the cost of NNEGs as a percentage of the total amount of
cash advanced. It shows that the cost of NNEGs is significantly different across
different house price return models. For example, it raises from 3.845% to 6.165%
for a male borrower aged 60 based on UK HPI; 7.835% to 10.155% on
London HPI; 5.773% to 8.093% on Manchester HPI; 5.027% to 7.347% to
Coventry HPI. The effect applies to the borrower at different ages and genders.
However, the elder borrowers lead to a reduction in NNEGs costs because the
coverage period of NNEGs is shorter.
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We also measure the corresponding pricing error by comparing the cost of NNEGs
with those calculated under the ARMA-GARCH dynamic jump model in Table 7. We
find that the GBM model gives the lowest value for NNEGs and the pricing errors are
far larger than those based on the ARMA-GARCH Dynamic jump model if we ignore
the important properties of autocorrelation, volatility clustering and jump effects in
house price dynamics. Our empirical analysis in Section 2 has already demonstrated
that jump risk cannot be ignored when modeling house price dynamics, and indeed,
taking the jump effect into account increases the overall cost of NNEGs. For example,
for a male aged 60 based on the UK HPI, it results in the pricing error by approximate
10.06% based on ARMA-GARCH model. On the other hand, ignoring the dynamic
jump function gives rise to a 2.92% pricing error. However, under different jump
components, there is not much difference between Merton jump and Double exponen-
tial jump diffusion model. Furthermore, when the effects of autocorrelation and
volatility clustering are considered, the pricing error decrease from 35.53% to 35.85%.

We further compare the cost of NNEGs using nationwide HPI with the city HPI. As
shown in Table 6 to Table 7, the cost of NNEGs is significantly different in UK
nationwide HPI and in the city HPI in London, Manchester and Coventry due to there
are localized effects in different cities and regions. Thus, those differences are large
enough to matter when pricing NNEGs. Li et al. (2010) actually use the UK nationwide
HPI in their analysis. Although they didn’t tackle the basis risk, they point out basis risk
exists when using nationwide HPI. The basis risk is difficult to measure in the absence
of individual house prices data. However, if we use the city HPI, it can help reduce the
basis risk comparing with the cost calculated using nationwide HPI. In addition, the
empirical results are consistent with Shao et al. (2015). Shao et al. (2015) has shown
that pricing reverse mortgage loan based on an average house price index results in a
substantial misestimation of the pricing in reverse mortgages. Therefore, the property’s
characteristics should be used in the pricing of reverse mortgages loans especially the
location, the number of bathrooms and the land area.

Conclusions

In conjunction with the rapid growth in the equity-release market, there is growing
demand for the development of effective risk management tools for these products. In
the UK, equity-release products are commonly sold with no-negative-equity guarantee
protection which caps the redemption amount at the lesser of the face amount of the
loan or the sale proceeds. It therefore seems crucial for providers to have a firm
understanding of the pricing of NNEGs.

Historical house price returns within the UK real estate market have experienced
significant abnormal shocks, such as the subprime mortgage crisis in 2008, and since
the providers of equity-release products assume substantial financial burdens when
issuing NNEGs, it is extremely important for such providers to take into account the
jump effects in house price returns when pricing these products. Despite this obvious
requirement, this issue has not yet been dealt with in the prior literature; thus it is
examined in the present study using an ARMA-GARCH jump model.

We contribute to the extant literature on NNEGs pricing in several ways. Firstly,
having identified the jump risk as an intrinsic element of house price returns within the
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UKmortgage market, we go on to propose the use of an ARMA-GARCH jump model.
Secondly, our estimation of this model reveals that it offers a better fit than the various
other house price return models proposed within the prior literature. Thirdly, we derive
a risk-neutral framework for NNEGs pricing. Fourth, we examine the basis risk. We
find the cost of NNEGs is significantly different between UK HPI and the HPI in the
cities of London, Manchester and Coventry due to there are localized effects in
different cities and regions. Finally, we show that if we ignore any housing dynamic
properties, it will lead to large pricing error of NNEGs price. Since equity-release
products are becoming increasingly important in globally aging societies, financial
institutions issuing such products need to understand the impact of the model risk on
NNEGs costs. We argue that the findings of our study can help such providers to
manage the inherent risks.

In the light of our analysis, we suggest two areas for further research. Interest-rate risk
is another important risk factor in analyzing the cost of NNEGs, since interest rates are a
fundamental economic variable within any economy. Incorporation of the feature of
stochastic interest rates in the valuation of contingent claims has been proposed in
numerous studies within the extant financial literature.18 It was also pointed out by Ho
et al. (1997) that interest rate risk has become an increasingly important factor as a result
of the term structure of interest rates affecting the value of options with long-term
maturity. Kijima andWong (2007) consider the pricing of equity-indexed annuities with
stochastic interest rates, noting their substantial effects on the valuing of insurance
policies with long horizons. A NNEG is similar to writing a long-duration European
put option on the mortgaged property. Incorporating a stochastic interest rate in valua-
tion of NNEGs should be a focus of a further study. In addition, this research illustrates
the valuation of a NNEG with a simply policy assumption. However, other realistic
features of a NNEG policy such as the prepayment design are well worth extending our
valuation framework to examine the effect of policy features on the cost of a NNEG.

Appendix 1

This appendix provides a brief introduction to the house price return models investi-
gated in the present study, with Ht denoting the house price at time t

The Geometric Brownian Motion Model

The random behavior of house prices is described under the Geometric Brownian
Motion (GBM) model as:

dHt

Ht
¼ μdt þ σdWt; ðA:1Þ

where μ is the drift term, σ refers to the volatility of house prices and Wt is a standard
Brownian motion.

18 Examples include Merton (1973), Rabinovitch (1989), Turnbull and Milne (1991) and Amin and Jarrow
(1992).
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The Merton Jump Diffusion Model

Considering the jump effect in a traditional GBM model, Merton (1976) proposed a
jump diffusion model aimed at capturing the leptokurtic feature of asset pricing. The
Merton model is expressed as:

dHt

Ht
¼ μdt þ σdWt þ d J t

JT ¼ ∑
j¼1

NT

V j−1
� � ðA:2Þ

where NT follows a homogeneous Poisson process with λ; and Vj represents the jump
size, which is an i.i.d. log-normal random variable with parameters, ϕ, θ2; that is, Vj ~N
(ϕ, θ2). It should be noted that Vj is independent of both the Brownian motion, W, and
the basic Poisson process, N.

The Double Exponential Jump Diffusion Model

The dynamics of the house price returns in the double exponential jump diffusion
model are given by:

dHt

Ht
¼ μdt þ σdWt þ d J t JT ¼ ∑

j¼1

NT

V j−1
� �

; ðA:3Þ

where Vj is a sequence of i.i.d. non-negative random variables, such that Y = log (Vj) has
an asymmetric double exponential distribution with density:

f γ yð Þ ¼ p⋅η1e
−η1y1þ y≥0f q⋅η2e

η2y1; y<0f η1 > 1; η2 > 0;

where p, q ≥ 0, p + q = 1. The η1 > 1 condition is imposed in order to ensure that the
house price, Ht, has a finite expectation. The respective means of the two exponential
distributions are 1/η1 and 1/η2, and we assume that all sources of randomness within the
model (Nt, Wt and γs) are independent.

The ARMA-GARCH Model

The ARMA(s,m)-GARCH(p,q) model is capable of capturing the properties of
autocorrelation and volatility clustering, with two specifications (the conditional
mean and conditional variance) being required for the development of this
model; that is,

Y t ¼ cþ ∑
s

i¼1
ϑiY þt−i ∑

m

j¼1
ζ jεþt− jεtht ¼ wþ ∑

q

i¼1
αiε

2
t−i þ ∑

p

j¼1
β jht− j; ðA:4Þ
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where s is the order of the autocorrelation terms; m represents the order of the
moving average terms; ϑi refers to the ith-order autocorrelation coefficient; ζj
is the jth-order moving average coefficient; and εt is the ith Gaussian
innovation.

Furthermore, given an information set of Φt–1, then ht denotes the conditional
variance of the innovations. We also let p be the order of the GARCH terms; q be
the order of the ARCH term; αi be the ith-order ARCH coefficient; and βj be the jth-
order GARCH coefficient.

The ARMA-EGARCH Model

As opposed to simply adopting a pure GARCH model, Nelson (1991) proposed
an exponential GARCH (EGARCH) model in an attempt to allow for the
asymmetric effects between positive and negative house returns. The
ARMA(s,m)-EGARCH(p,q) model can be expressed as follows:

Y t ¼ cþ ∑
s

i¼1
ϑiYþt−i ∑

m

j¼1
ζ jεþt− jεtln htð Þ ¼ wþ ∑

q

i¼1
αieεt−i þ ∑

q

i¼1
ιi jeεt−ij−E jeεt−ij� �h i

þ ∑
p

j¼1
β jln ht− j

� �
;

ðA:5Þ

where eεt ¼ εt=
ffiffiffiffi
ht

p
is the standardized residual at time t.

An EGARCH process provides for the leverage effect using the leverage parameters,
ti, which allows the conditional variance to respond to the asymmetric effect between
the positive and negative innovations.

Appendix 2

We consider the housing price process follows an ARMA-GARCH jump model.

Specifically, in a filtered probability space Ω;Φ;P; Φtð ÞTt¼ j

� �
be a complete probabil-

ity space, the house price return process shown in Eq. (3) and (7) is given by

Y t ¼ ln
Ht

Ht−1

� �
¼ μt þ εt; ht ¼ wþ ∑

q

i¼1
αiε

2
t−i þ ∑

p

j¼1
β jht− j; ðB:1Þ

where ut ¼ cþ ∑
s

i¼1
ϑiY t−i þ ∑

m

j¼1
ζ jε

t− j is the conditional mean function, given the time

t − 1 information Φt − 1; s is the order of the autocorrelation terms; m is the order of the
moving average terms; ϑi is the ith-order autocorrelation coefficient; ζj is the jth-order
moving average coefficient. In addition,εt is the total returns innovation with
conditional variance ht, given the information Φt − 1; p is the order of the GARCH
terms; q is the order of the ARCH term; αi is the ith-order ARCH coefficient; and βj is
the jth-order GARCH coefficient.

To obtain the housing price dynamic under a risk-neutral measure, we aslo employ
an equivalent martingale measure using the conditional Esscher transform developed
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by Bühlmann et al. (1996). Due to the discount housing price under the Q measure is a
martingale, we have:

Ht−1 ¼ EQ Bt−1

Bt
Ht





Φt−1

� �
¼ EQ exp −rð ÞHtjΦt−1ð Þ ðB:2Þ

We assume that the interest rate is fixed at r. Consequently, Bt = Bt − 1er. we obtain:

Ht−1 ¼ e−rEQ HtjΦt−1ð Þ ¼ e−rEP Λt

Λt−1
Ht





Φt−1

� �
¼ Ht−1e−r

EP exp at þ ιð ÞY tð ÞjΦt−1ð Þ
EP exp atð ÞY tð ÞjΦt−1ð Þ

ðB:3Þ

Or equivalently,

er ¼ EP exp at þ ιð ÞY tð ÞjΦt−1ð Þ
EP exp atð ÞY tð ÞjΦt−1ð Þ ðB:4Þ

In order for risk neutral Q to be an equivalent martingale measure, we need
have

EQ exp Y tð ÞjΦt−1½ � ¼ er ðB:5Þ

Because, Maheu and McCurdy (2004) has point out the conditional moments of
return are

E Y tjΦt−1½ � ¼ ut
Var Y tjΦt−1½ � ¼ ht þ ϕ2 þ θ2

� �
λt ¼ h*t

ðB:6Þ

Thus, Yt is normally distributed with mean ut and variance h*t , given the
information Φt − 1, we obtain

EQ exp ιY tð ÞjΦt−1½ � ¼
exp at þ ιð Þut þ 1

2
at þ ιð Þ2h*t

� �
exp atut þ 1

2
at2h*t

� � ¼ exp ut þ ath*t
� �

ιþ 1

2
h*t ι

2

� �
ðB:7Þ

Therefore,

EQ exp Y tð ÞjΦt−1½ � ¼ exp ut þ ath*t þ
1

2
h*t

� �
ðB:8Þ

Through the Eq. (B.5) and (B.8), we have

ut ¼ r−ath*t −
1

2
h*t ðB:9Þ
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Similarly, the characteristic function of εt under martingale measure Q is of the form:

EQ exp iϖεtð Þ Φt−1jð Þ ¼ EP Λt

Λt−1
eiϖεt Φt−1j

� �
¼ EP eatY t eiϖεt jΦt−1ð Þ

EP exp atð ÞY tð ÞjΦt−1ð Þ

¼ exp atutð ÞEP e atþiϖð Þεt jΦt−1
� �

exp atut þ 1

2
at2h*t

� � ¼
exp

1

2
at þ iϖð Þ2h*t

� �
exp

1

2
at2h*t

� �
¼ exp iϖath*t −

1

2
ϖ2h*t

� �
ðB:10Þ

Consequently, εt under the measure Q become normally distributed, with mean
ath*t and variance h*t , given the information Φt − 1. That is, given the information

Φt − 1, ε
Q
t ¼ εt−ath*t follow normally mean 0 and variance h*t under measure Q.

Finally, the Eq. (B.1) can be rewritten as:

Y t ¼ ln
Ht

Ht−1

� �
¼ μt þ εt ¼ r−ath*t −

1

2
h*t þ εQt þ ath*t ¼ r−

1

2
h*t þ εQt ðB:11Þ
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